Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 180(17): 2214-2229, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36928865

RESUMO

BACKGROUND AND PURPOSE: Itch is associated with several pathologies and is a common drug-induced side effect. Chloroquine (CQ) is reported to induce itch by activating the Mas-related G protein-coupled receptor MrgprA3 and subsequently TRPA1. In this study, we demonstrate that CQ employs at least two MrgprA3-independent mechanisms to activate or sensitize TRPA1 and TRPV1. EXPERIMENTAL APPROACH: Patch clamp and calcium imaging were utilized to examine effects of CQ on TRPA1 and TRPV1 expressed in HEK 293T cells. KEY RESULTS: In calcium imaging, CQ induces a concentration-dependent but MrgprA3-independent activation of TRPA1 and TRPV1. Although CQ itself inhibits TRPA1 and TRPV1 in patch clamp recordings, co-application of CQ and ultraviolet A (UVA) light evokes membrane currents through both channels. This effect is inhibited by the reducing agent dithiothreitol (DTT) and is reduced on mutants lacking cysteine residues accounting for reactive oxygen species (ROS) sensitivity. The combination of CQ and UVA light triggers an accumulation of intracellular ROS, removes fast inactivation of voltage-gated sodium currents and activates TRPV2. On the other hand, CQ is a weak base and induces intracellular alkalosis. Intracellular alkalosis can activate TRPA1 and TRPV1, and CQ applied at alkaline pH values indeed activates both channels. CONCLUSION AND IMPLICATIONS: Our data reveal novel pharmacological properties of CQ, allowing activation of TRPA1 and TRPV1 via photosensitization as well as intracellular alkalosis. These findings add more complexity to the commonly accepted dogma that CQ-induced itch is specifically mediated by MrgprA3 coupling to TRPA1.


Assuntos
Cloroquina , Canais de Potencial de Receptor Transitório , Humanos , Cloroquina/efeitos adversos , Canal de Cátion TRPA1 , Células Receptoras Sensoriais , Cálcio/metabolismo , Espécies Reativas de Oxigênio , Prurido/tratamento farmacológico , Canais de Cátion TRPV/fisiologia , Gânglios Espinais/metabolismo
2.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34639197

RESUMO

TRPV1 mediates pain occurring during sickling episodes in sickle cell disease (SCD). We examined if hemin, a porphyrin released during intravascular hemolysis modulates TRPV1. Calcium imaging and patch clamp were employed to examine effects of hemin on mouse dorsal root ganglion (DRG) neurons and HEK293t cells expressing TRPV1 and TRPA1. Hemin induced a concentration-dependent calcium influx in DRG neurons which was abolished by the unspecific TRP-channel inhibitor ruthenium red. The selective TRPV1-inhibitor BCTC or genetic deletion of TRPV1 only marginally impaired hemin-induced calcium influx in DRG neurons. While hTRPV1 expressed in HEK293 cells mediated a hemin-induced calcium influx which was blocked by BCTC, patch clamp recordings only showed potentiated proton- and heat-evoked currents. This effect was abolished by the PKC-inhibitor chelerythrine chloride and in protein kinase C (PKC)-insensitive TRPV1-mutants. Hemin-induced calcium influx through TRPV1 was only partly PKC-sensitive, but it was abolished by the reducing agent dithiothreitol (DTT). In contrast, hemin-induced potentiation of inward currents was not reduced by DTT. Hemin also induced a redox-dependent calcium influx, but not inward currents on hTRPA1. Our data suggest that hemin induces a PKC-mediated sensitization of TRPV1. However, it also acts as a photosensitizer when exposed to UVA-light used for calcium imaging. The resulting activation of redox-sensitive ion channels such as TRPV1 and TRPA1 may be an in vitro artifact with limited physiological relevance.


Assuntos
Gânglios Espinais/metabolismo , Hemina/farmacologia , Neurônios/metabolismo , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/fisiologia , Animais , Cálcio/metabolismo , Gânglios Espinais/efeitos dos fármacos , Células HEK293 , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Canal de Cátion TRPA1/efeitos dos fármacos , Canal de Cátion TRPA1/genética , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/genética
3.
J Immunol ; 182(8): 4985-93, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19342678

RESUMO

The cell surface heparan sulfate proteoglycan syndecan-1 (CD138) modulates the activity of chemokines, cytokines, integrins, and other adhesion molecules which play important roles in the regulation of inflammation. We have previously shown that syndecan-1-deficient murine leukocytes display increased interactions with endothelial cells and increased diapedesis in vivo and in vitro. In this study, we demonstrate that syndecan-1 has an important function as a negative modulator in the murine contact allergy model of oxazolone-mediated delayed-type hypersensitivity (DTH). Following elicitation of the DTH response, syndecan-1-deficient mice showed an increase in leukocyte recruitment, resulting in an increased and prolonged edema formation. Expression of the cytokines TNF-alpha and IL-6 of the chemokines CCL5/RANTES and CCL-3/MIP-1alpha and of the adhesion molecule ICAM-1 were significantly increased in syndecan-1-deficient compared with wild-type mice. In wild-type mice, syndecan-1 mRNA and protein expression was reduced during the DTH response. The differentially increased adhesion of syndecan-1-deficient leukocytes to ICAM-1 was efficiently inhibited in vitro by CD18-blocking Abs, which emerges as one mechanistic explanation for the anti-inflammatory effects of syndecan-1. Collectively, our results show an important role of syndecan-1 in the contact DTH reaction, identifying syndecan-1 as a novel target in anti-inflammatory therapy.


Assuntos
Hipersensibilidade Tardia/imunologia , Sindecana-1/imunologia , Animais , Movimento Celular/imunologia , Epitopos/imunologia , Heparitina Sulfato/imunologia , Hipersensibilidade Tardia/genética , Hipersensibilidade Tardia/metabolismo , Hipersensibilidade Tardia/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos/citologia , Leucócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regulação para Cima
4.
Hum Mol Genet ; 17(7): 996-1009, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18158310

RESUMO

Reduced activity of beta4-galactosyltransferase 7 (beta4GalT-7), an enzyme involved in synthesizing the glycosaminoglycan linkage region of proteoglycans, is associated with the progeroid form of Ehlers-Danlos syndrome (EDS). In the invertebrates Drosophila melanogaster and Caenorhabditis elegans, mutations in beta4GalT-7 affect biosynthesis of heparan sulfate (HS), a modulator of several biological processes relevant to wound repair. We have analyzed structural alterations of HS and their functional consequences in human beta4GalT-7 Arg270Cys mutant EDS and control fibroblasts. HS disaccharide analysis by reversed phase ion-pairing chromatography revealed a reduced sulfation degree of HS paralleled by altered immunostaining patterns for the phage-display anti-HS antibodies HS4E4 and RB4EA12 in beta4GalT-7 mutant fibroblasts. Real-time PCR-analysis of 44 genes involved in glycosaminoglycan biosynthesis indicated that the structural alterations in HS were not caused by differential regulation at the transcriptional level. Scratch wound closure was delayed in beta4GalT-7-deficient cells, which could be mimicked by enzymatic removal of HS in control cells. siRNA-mediated knockdown of beta4GalT-7 expression induced morphological changes in control fibroblasts which suggested altered cell-matrix interactions. Adhesion of beta4GalT-7 deficient cells to fibronectin was increased while actin stress fiber formation was impaired relative to control cells. Also collagen gel contraction was delayed in the beta4GalT-7 mutants which showed a reduced formation of pseudopodia and filopodia, less efficient penetration of the collagen gels and a diminished formation of collagen suprastructures. Our study suggests an HS-dependent basic mechanism behind the altered wound repair phenotype of beta4GalT-7-deficient EDS patients.


Assuntos
Movimento Celular , Síndrome de Ehlers-Danlos/fisiopatologia , Galactosiltransferases/metabolismo , Heparitina Sulfato/metabolismo , Cicatrização , Actinas/metabolismo , Animais , Adesão Celular , Síndrome de Ehlers-Danlos/enzimologia , Síndrome de Ehlers-Danlos/genética , Feminino , Fibrina/fisiologia , Fibroblastos/citologia , Fibronectinas/fisiologia , Galactosiltransferases/genética , Perfilação da Expressão Gênica , Glicosaminoglicanos/biossíntese , Glicosaminoglicanos/genética , Heparitina Sulfato/química , Humanos , Lactente , Masculino , Camundongos , Pseudópodes/fisiologia , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fibras de Estresse/metabolismo , Sindecana-4/genética , Sindecana-4/metabolismo
5.
Biochimie ; 89(5): 637-57, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17335953

RESUMO

Human skin fibroblasts efficiently internalize the matrikine decorin by receptor-mediated endocytosis, however, very little is known about its intracellular trafficking routes up to lysosomal degradation. In an in vitro system measuring uptake and degradation of [(35)S]sulfate-labeled decorin, endocytosis was blocked by 46% when clathrin assembly/disassembly was inhibited using chlorpromazine. Pharmacological inhibition of EGF receptor signaling caused 34% reduction of decorin uptake, whereas inhibition of the IGF receptor had no effect. Using confocal immunofluorescence microscopy, we determined that only about 5-10% of internalized decorin colocalized with the EGFR. Thus, uptake depends on EGFR signaling rather than trafficking along the same pathway. Decorin passes through early endosomes towards trafficking to lysosomes, since more than 50% of decorin colocalized with EEA1. Moreover, inhibition of endosomal fusion by wortmannin caused a profound inhibition of decorin endocytosis. Overexpression of the clathrin-binding Hrs protein, which has previously been shown to inibit EGFR degradation blocked the degradation of decorin. Cholesterol depletion by filipin inhibited uptake of decorin by 34%, however, nearly no intracellular colocalization was found between decorin and caveolin-1. The combined use of filipin and chlorpromazine had an additive inhibitory effect on decorin endocytosis. Moreover, chlorpromazine diverted decorin from the chlorpromazine-sensitive pathway to an alternative uptake route. The CD44/hyaluronan pathway was excluded as an endocytic route for decorin. Our observations indicate that decorin is taken up by more than one endocytic pathway. Of note, lipid-raft-dependent EGFR signaling modulates decorin uptake, suggesting the presence of a potential feedback regulation mechanism for desensitization of signaling events mediated by decorin.


Assuntos
Endocitose , Receptores ErbB/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Proteoglicanas/metabolismo , Transdução de Sinais , Clorpromazina/farmacologia , Colesterol , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Clatrina , Decorina , Dermatan Sulfato/metabolismo , Endocitose/efeitos dos fármacos , Receptores ErbB/metabolismo , Fibroblastos , Filipina/farmacologia , Humanos , Transporte Proteico , Pele
6.
J Invest Dermatol ; 122(6): 1372-80, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15175026

RESUMO

In skin, hemidesmosomal protein complexes attach the epidermis to the dermis and are critical for stable connection of the basal epithelial cell cytoskeleton with the basement membrane (BM). In muscle, a similar supramolecular aggregate, the dystrophin glycoprotein complex links the inside of muscle cells with the BM. A component of the muscle complex, dystroglycan (DG), also occurs in epithelia. In this study, we characterized the expression and biochemical properties of authentic and recombinant DG in human skin and cutaneous cells in vitro. We show that DG is present at the epidermal BM zone, and it is produced by both keratinocytes and fibroblasts in vitro. The biosynthetic precursor is efficiently processed to the alpha- and beta-DG subunits; and, in addition, a distinct extracellular segment of the transmembranous beta-subunit is shed from the cell surface by metalloproteinases. Shedding of the beta-subunit releases the alpha-subunit from the DG complex on the cell surface into the extracellular space. The shedding is enhanced by IL-1beta and phorbol esters, and inhibited by metalloproteinase inhibitors. Deficiency of perlecan, a major ligand of alpha-DG, enhanced shedding suggesting that lack of a binding partner destabilizes the epithelial DG complex and makes it accessible to proteolytic processing.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Derme/citologia , Queratinócitos/metabolismo , Glicoproteínas de Membrana/metabolismo , Linhagem Celular , Meios de Cultura , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Derme/metabolismo , Distroglicanas , Humanos , Queratinócitos/citologia , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Transfecção
7.
Am J Pathol ; 160(3): 1181-91, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11891213

RESUMO

Decorin, a small dermatan-sulfate proteoglycan, participates in extracellular matrix assembly and influences directly and indirectly cell behavior via interactions with signaling membrane receptors and transforming growth factor (TGF)-beta. We have therefore compared the development of tubulointerstitial kidney fibrosis in wild-type (WT) and decorin-/- mice in the model of unilateral ureteral obstruction. Without obstruction, kidneys from decorin-/- mice did not differ in any aspect from their WT counterparts. However, already 12 hours after obstruction decorin-/- animals showed lower levels of p27(KIP1) and soon thereafter a more pronounced up-regulation and activation of initiator and effector caspases followed by enhanced apoptosis of tubular epithelial cells. Later, a higher increase of TGF-beta1 became apparent. After 7 days, there was an up to 15-fold transient up-regulation of the related proteoglycan biglycan, which was mainly caused by the appearance of biglycan-expressing mononuclear cells. Other small proteoglycans showed no similar response. Because of enhanced degradation of type I collagen, end-stage kidneys from decorin-/- animals were more atrophic than WT kidneys. These data suggest that decorin exerts beneficial effects on tubulointerstitial fibrosis, primarily by influencing the expression of a key cyclin-dependent kinase inhibitor and by limiting the degree of apoptosis, mononuclear cell infiltration, tubular atrophy, and expression of TGF-beta1.


Assuntos
Apoptose/genética , Modelos Animais de Doenças , Nefropatias/genética , Nefropatias/patologia , Proteoglicanas/genética , Animais , Decorina , Proteínas da Matriz Extracelular , Fibrose , Deleção de Genes , Rim/patologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...